
Modeling Interfaces and

Interface Protocols

Solving some problems in architecture verification
for services offered at a SW interface

IV&V Workshop 2010

Karl Frank

TASC General Scientist

Topics

• SW Interface and Component Concepts

– Software Architecture Concepts

– How these are modeled in UML 2

– How such models can be used in Architecture Verification

– Examples: Manual Transmission and Space Camera

• What you may learn if presentation works:• What you may learn if presentation works:

– A model based approach to architecture verification

– How protocol statemachine is simpler than a behavioral statemachine

– Be able to relate “design by contract” for services with interface
protocol design

– How to tell from protocol statemachine, what service invocation
sequences will work and which won’t

– Why this is relevant to commercialization of space -software interfaces
and interchangeable components

Motivation

• Architecture modeling supports tracing from high level

requirements down to tests, and back up:

– Interfaces an intermediate stage: services not how they are realized

– Technique for verifying that a service interface is adequately specified

• Keeping up with of our industry:

– IV&V verifying architecture, design, and test plans for a project that is – IV&V verifying architecture, design, and test plans for a project that is

using UML component interfaces, ports, and protocol statemachines

• Fixing hole in command language specs:

– fallacy of the lexicon

• No language is defined by its lexicon

• It takes syntax, semantics, and pragmatics

• Protocol statemachines specify how commands are composed into valid sequences

• Mission incident could have been prevented by this approach

Failure to acquire fly-by photos

• Science mission had on-board command-operated
camera, to acquire images, to be beamed back

• At certain points in the mission, <TakePicture>
commands were sent

– Syntax checking at mission control and on-board
confirmed the commands were well formedconfirmed the commands were well formed

– Outcome could not be seen by scientists until the
opportunity for getting desired images was past

– After anxious waiting, radiated datastream that should
have had the images came back, empty!

• <TakePicture> needed an <EnableCamera>
command to have intended effect

Ongoing Fictional Example

• Next slides show deployment and component
diagrams of a possible system architecture, using
replaceable CameraY components on a variety of
vehicles

• This training example is fictionalized.• This training example is fictionalized.

• Start with a component interface model

• From there to Protocol Statemachine

– A specialized form of statemachine for defining rules
client needs to follow in using the services

– Here, to use CameraY services, regardless of vendor

Example: Deployment Diagram
Physical context, not software-centric view

SW Interfaces, SW services

• Significant differences from physical interfaces

– Software services don’t flow like fuel thru pipes

– Invoked from the client side, arrows should go from

consumer to supplier!

– Monitoring ongoing system health and status and

communicating this on a continuous data stream is

something like fuel flowing thru pipes, but the wrong

paradigm for SOA. Services invoked from client side.

– Delivery of the service often is not a flow back to the

client, but the performance of a local behavior

Building Blocks of Software

Architecture are components, CSCIs

• Software interfaces exposed by components
at ports, so other components can invoke at ports, so other components can invoke
services

• Capabilities reside in the top (application) in
context of the standard layered
communication model introduced by OSI

From SW IV&V perspective

Application Layer rides on top of communication architecture

Architecture Model Concepts
• Interface accessed thru Port on Component

– We model components as black boxes to maintain

independence of IV&V models from implementation

– Port typed for static check of data in or out

• Interface is an abstraction:

– user does not need to know about implementation,

– Protocol encompasses all services offered at interface

• Hence, our topic is really a unity:

– Modeling Component Interfaces without modeling

protocol only establishes the static correctness of a

component architecture.

– Topic goes beyond static architecture audit to dynamic

testing of architecture thru its interfaces

Ports:

represent

Interaction

points

FSW: Flight Software

Static Notation Review

RIU: remote interface unit

2 Components realize same interface

Interfaces are abstractions of services
• Components

realize these
services

Alternative terminology

and notation for

Ball & Socket … to

show services offered

at the interface

How model behavior invoked at an

abstract level?

• Implemented operations realized in an actual
component (CSCI) will differ in some details

– For Architecture, we don’t care about actual behaviors

• If they realize the interface we don’t care.

• But how to specify part we do care about?• But how to specify part we do care about?

– By contract: preconditions, invariants, postconditions for
each service, one – at – a time

– But services offered in an interface are often part of a set,
to be used in certain ways, and not others

• Consider interface for operating a car:

– Don’t move the stickshift and THEN step on clutch

– You step on the clutch and THEN shift

Use a Protocol Statemachine
• Black box model for benefit of clients

• Services invoked shown as triggers on transitions

• Shows legal sequences of service invocation

How about something like this:

Protocol Rules Out

Throw Stickshift while

Clutch Engaged –

Doesn’t have to explain

WHY.

What a protocol statemachine hides! Internals

Context: Model-Based Verification

• Objectives
– Close a gap in our ability to define relevant tests

• What system should not be expected to do
– If test violates protocol, is the test is inappropriate?

• Ability to verify conformance of different implementations
to same interface specifications

– Close gap in our SOA modeling approach – Close gap in our SOA modeling approach
• wrt architectural interface modeling

• wrt the behavior of services

• Keep abreast of project modeling

– Approach to generating tests to cover requirements
• Based on modeling capabilities new in UML 2

23 Oct 2008
Assertion Library Tooling

18

Protocol statemachine

• Simpler than ordinary UML statemachines

• For characterizing the rules for invoking services at a
software interface

– Protocol statemachines are linked in UML models to
Interfaces, whereas “ordinary” UML statemachines are
linked to components which realize interfaceslinked to components which realize interfaces

– Protocol statemachines are for defining the rules for using
the services exposed at an interface, and so they conceal
the actual workings of the component

• Transitions are triggered by invocations of service – the messages
that arrive at the interface

• Shows changes in state externally visible (meaning, the modal
behavior that matters to the client using the interface)

• No effects (internal call to private objects) allowed transitions

From UML 2 Spec

Protocol state machines are used to express usage
protocols. Protocol state machines express the
legal transitions that a classifier can trigger. The
state machine notation is a convenient way to
define a lifecycle for objects, or an order of the define a lifecycle for objects, or an order of the
invocation of its operation.
Protocol state machines do not preclude any
specific behavioral implementation. They enforce
legal usage scenarios. Interfaces and ports can be
associated to this kind of state machines.

Component versus Interface

• Many actual components from diverse developers realize
the SAME interface
– Interfaces define external or “black box” view

– Interchangeability of components depends on concept of
interface and ability to test components

• To test a component to see if it realizes a specified interface • To test a component to see if it realizes a specified interface
depends on defining tests on the basis of protocol
statemachine
– Many actual behaviors may conform to the protocol

– “Ordinary” UML statemachine is called behavioral statemachine.

– Shows effects of transitions, the effects which are not allowed in
a protocol statemachine

Conceptual Overview

Tests on

components
Requirements

Concept of

Operations for SUT
Generative & Navigable Toolchain

Specifications

Architecture

Documents

components

conducted in

Testing

Environment

UML Eclipse

UML Models lead from interface design to tests

tr
a

ce

Traceability Summary

Requirements Level n+1

UML SRM Level j
Test analysis

and reporting

tr
a

ce

Requirements Level n

30 Aug 2010
Assertion Library Tooling

23

Refined UML Component and

Statemachine Model Level j+1

Suite of Event-based Test scripts

and reporting

Test analysis can

navigate back up

the traceability chain

to report context of

pass or fail

Test Outcomes

SUT running in

Test Environment

tr
a

ce
tr

a
ce

Why Model Component Interfaces?

• Modeling to the level of components is
appropriate for verifying architecture

• Interfaces and the services they offer are the
external view of components that matters

• Why?• Why?
1. IV&V arch verification should not mess with internals

2. Model of component interfaces useful in verifying
that components integrate as a working system

3. Service concept; is there a provider for every
required interface? Match of providers and
consumers provides a static audit of completeness.

Why Model Interface Protocols?

1. Designing the interface is more than specifying
the services one-at-a-time
– Preconditions for successful invocation of a service

are established by postcondition of a predecessor.

– Successful maintenance of an invariant condition not
to be disrupted by an intervening invocation.

– Successful maintenance of an invariant condition not
to be disrupted by an intervening invocation.

2. Protocol Statemachines add dynamic view of
how the services make a complete set
– Audit of service preconditions and postconditions

against the rules set out in the protocol establish a
kind of dynamic completeness for the interface.

Why Model Interface …? Continued

3 Testing actual components is more than testing
services one-at-a-time

– Does the component reject illegal messages, even when
syntactically well-formed, based on dynamic context?

– Does the component respond to messages as specified by – Does the component respond to messages as specified by
changes in what it will respond to?

4 Drill down to the actual behavior of implementations is
mediated by protocols, which thus support traces from
implementation back to requirements

– A behavioral statemachine and whitebox testing is one
step of refinement beyond interface specification.

Back to mission incident

Deployment Of 2 Cameras from different vendors

Y-Camera Commercialization

• Y-Cameras specified as components providing an interface

– Y-Cameras can be provided by a number of qualified vendors

• Controlled by radiated commands originated at Mission Control, or by

autonomous on-board software

• Y-Camera systems offer a software interface for control

• Any component implementing the Y-Camera specs can, on demand, point at a

given environmental direction

Like a human cameraman told to point the camera in the direction of – Like a human cameraman told to point the camera in the direction of

the actor starring in a scene, Cameras should track an assigned target,

compensating for shifting platform attitude, until pointed elsewhere

or deactivated.

• Take-a-picture function requires start and end exposure services

– Can take a series of images while pointing at the same target

– May want to point in the right direction first, await some event

• Deactivate device to conserve power, aka sleep

Internal differences among cameras likely, best

kept private

Visibility indicators for Visibility indicators for

actual operations are not

appropriate for the

abstract services in an

interface

Four services exposed

• But they are not unrelated!

• How are they to be used?

• When you first establish
communication with any
Ycamera should you tell it to
takePicture? Dynamic context, takePicture? Dynamic context,
not static validation

• What state does it reach after 2
pointAt messages?
– Note: not what will it DO

• Answers depend on the
protocol statemachine

Commands illegal except as specified here

Tabular View

• Blue column labels show possible states

• Green row labels show possible events (messages)

• Black labels show next state, following the event represented
in that column, if protocol permits!

• Some messages contrary to protocol in a given state

Quiescent StayingOnTarget TakingPicture

pointAt(target) StayingOnTarget StayingOnTarget Not Legal

startExposure() Not Legal TakingPicture Not Legal

endExposure() Not Legal Not Legal StayingOnTarget

sleep() Quiescent Quiescent Not Legal

Answers and discussion

What state is reached after 2 pointAt(target)

messages in a row?

1. Depends on context, by which we mean, the current

state, determined by the prior sequence of

messages. pointAt(target) should not be sent while

camera is taking a picture. If this should happen, camera is taking a picture. If this should happen,

results undefined and likely to be undesirable.

2. This protocol statemachine does not address the

question of whether the actual parameter (where to

point) changes in successive pointAt(target) events.

3. It is not the purpose of the protocol to model

intended semantics of the pointAt(target) message

Summary

Verification using UML interface and statemachine models

• Verification of software architectures by using UML(Unified Modeling Language)
interface and statemachine models, in the context of the broader systems
engineering problem of ensuring that complex systems can be integrated into a
working whole.

• A failure this approach would have prevented: The case of the camera that did not
take pictures because the command to take a picture needed to be preceded by a take pictures because the command to take a picture needed to be preceded by a
command to enable the camera.

Verification in General

• The goal of verification is, in general terms, proving that certain properties hold or
do not hold, of some subject system.

Software Architecture Verification in Particular

• More specifically, the property we are concerned with verifying is that the system
can be produced by successful integration of a variety of separately produced
subsystems, whose organization is described as an architecture. Hence, the topic
of this presentation is software architecture verification.

